
15 Eigenvectors and Eigenvalues

1. Consider the matrix equation
[

0 1
6 1

] [
𝑥
𝑦

]
=

[
𝑦

6𝑥 + 𝑦

]
=

[
𝑥′
𝑦′

]
. We wish to find an eigen-

vector
[

𝑥
𝑦

]
.

(a) On graph paper, draw what the matrix
[

0 1
6 1

]
does to the vectors

[
1
0

]
and

[
0
1

]
.

[
1
0

]
goes to

[
0
6

]
(dashed lines) and

[
0
1

]
goes to

[
1
1

]
(solid lines):

−1
0
1
2
3
4
5
6𝑦

−2 0 2
𝑥

Figure 1: The mapping of the matrix.

(b) In your picture, draw a rough line through the origin where you think a family of eigenvec-
tors may be.

This is the line where vectors should change direction. Thus, it should be roughly where the diagram is
“flipped,” though this definitely is not a pure reflection.

−1
0
1
2
3
4
5
6

𝑦

−2 0 2
𝑥

𝑙

Figure 2: The mapping of the matrix, with the suspected eigenvectors indicated by 𝑙.

(c) Try some lattice points, say
[ 1
1
]
,
[ 1
2
]
,
[ 1
3
]
,
[ 1
4
]
,
[ 1
5
]
. What does the matrix transform each

vector into?

These points are transformed as follows:
[

0 1
6 1

] [
1
1

]
=
[

1
7

]
;

[
0 1
6 1

] [
1
2

]
=
[

2
8

]
;
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[
0 1
6 1

] [
1
3

]
=
[

3
9

]
;

[
0 1
6 1

] [
1
4

]
=
[

4
10

]
;

[
0 1
6 1

] [
1
5

]
=
[

5
11

]
.

(d) Which of these is an eigenvector?
[

1
3

]
is an eigenvector, since the image is

[
3
9

]
, which is just the original vector times 3.

(e) Does it lie near the line you drew earlier?

Well, it lies on the line I drew because I’m using the computer, but it should lie close. Here it is superim-
posed on the previous graph:

−1
0
1
2
3
4
5
6

𝑦

−2 0 2
𝑥

𝑙

Figure 3: The mapping of the matrix, with the suspected eigenvectors indicated by 𝑙.

2. This guess-and-check process for finding eigenvectors is terrible, so let’s develop a procedure
to find the eigenvalues and eigenvectors for any 2 × 2 matrix. We will use the same example.

[
0 1
6 1

] [
𝑥
𝑦

]
= 𝜆

[
𝑥
𝑦

]
Definition of eigenvector

= 𝜆
[

1 0
0 1

] [
𝑥
𝑦

]

⟹
([

0 1
6 1

]
− 𝜆

[
1 0
0 1

])[
𝑥
𝑦

]
=
[

0
0

]
Subtraction and factoring

⟹
[

−𝜆 1
6 1 − 𝜆

] [
𝑥
𝑦

]
=
[

0
0

]

(a) If
[ 𝑥
𝑦
] ≠ [ 0

0
]
, then

det
[

−𝜆 1
6 1 − 𝜆

]
= 0.

Why? Think inverses.

If we left-multiply both sides of the last equation above by the inverse of the 2 × 2 matrix, we’ll get

[
𝑥
𝑦

]
=
[

−𝜆 1
6 1 − 𝜆

]−1 [ 0
0

]
=
[

0
0

]
.

But we assumed
[

𝑥
𝑦

]
≠
[

0
0

]
, so the inverse must not exist—that’s the only other case. Thus,

det
[

−𝜆 1
6 1 − 𝜆

]
= 0.
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(b) Find the above determinant in terms of 𝜆 and solve for the eigenvalues.

We have

det
[

−𝜆 1
6 1 − 𝜆

]
= −(1 − 𝜆)𝜆 − 1(6) = 𝜆2 − 𝜆 − 6.

This is just a quadratic in 𝜆, which factors as

(𝜆 + 2)(𝜆 − 3) = 0.

Thus, 𝜆 = −2, 3.

(c) One eigenvalue is 𝜆 = 3. We solve for the associated eigenvector like so:
[

0
0

]
=
[

−𝜆 1
6 1 − 𝜆

] [
𝑥
𝑦

]

=
[

−3 1
6 −2

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

−3𝑥 + 𝑦
6𝑥 − 2𝑦

]

⟹ 𝑦 = 3𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
3

]
(for some 𝑠)

Solve for the other eigenvector using the other eigenvalue from part (b).

The other eigenvalue is −2.

[
0
0

]
=
[

−𝜆 1
6 1 − 𝜆

] [
𝑥
𝑦

]

=
[

2 1
6 3

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

2𝑥 + 𝑦
6𝑥 + 3𝑦

]

⟹ 𝑦 = −2𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
−2

]
.

(d) Check your work by multiplying the original matrix by the eigenvector!

[
0 1
6 1

]
𝑠
[

1
−2

]
= 𝑠

[
0 ⋅ 1 − 2 ⋅ 1
6 ⋅ 1 − 2 ⋅ 1

]
= 𝑠

[
−2
4

]
= −2 ⋅

(
𝑠
[

1
−2

])
.

Indeed, the image of 𝑠
[

1
−2

]
is the pre-image scaled by −2.

3. Solve for the eigenvectors and eigenvalues of the following matrices:

(a)
[

3 24
4 7

]
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[
3 24
4 7

] [
𝑥
𝑦

]
= 𝜆

[
𝑥
𝑦

]
Definition of eigenvector

= 𝜆
[

1 0
0 1

] [
𝑥
𝑦

]

⟹
([

3 24
4 7

]
− 𝜆

[
1 0
0 1

])[
𝑥
𝑦

]
=
[

0
0

]
Subtraction and factoring

⟹
[

3 − 𝜆 24
4 7 − 𝜆

] [
𝑥
𝑦

]
=
[

0
0

]

det
[

3 − 𝜆 24
4 7 − 𝜆

]
= 0

(3 − 𝜆)(7 − 𝜆) − 24(4) = 0
𝜆2 − 10𝜆 − 75 = 0
(𝜆 + 5)(𝜆 − 15) = 0

𝜆 = −5, 15.

Thus, the eigenvalues are −5 and 15. We now find the corresponding eigenvectors.
−5:

[
0
0

]
=
[

3 − 𝜆 24
4 7 − 𝜆

] [
𝑥
𝑦

]

=
[

8 24
4 12

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

8𝑥 + 24𝑦
4𝑥 + 12𝑦

]

⟹ 𝑦 = −3𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
−3

]
.

The first eigenvalue-eigenvector pair is
{
−5,

[
1
−3

]}
.

15:

[
0
0

]
=
[

3 − 𝜆 24
4 7 − 𝜆

] [
𝑥
𝑦

]

=
[

−12 24
4 −8

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

−12𝑥 + 24𝑦
4𝑥 − 8𝑦

]

⟹ 𝑦 = 2𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
2

]
.

The second eigenvalue-eigenvector pair is
{
15,

[
1
2

]}
.

(b)
[

3 1
2 4

]
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[
3 1
2 4

] [
𝑥
𝑦

]
= 𝜆

[
𝑥
𝑦

]
Definition of eigenvector

= 𝜆
[

1 0
0 1

] [
𝑥
𝑦

]

⟹
([

3 1
2 4

]
− 𝜆

[
1 0
0 1

])[
𝑥
𝑦

]
=
[

0
0

]
Subtraction and factoring

⟹
[

3 − 𝜆 1
2 4 − 𝜆

] [
𝑥
𝑦

]
=
[

0
0

]

det
[

3 − 𝜆 1
2 4 − 𝜆

]
= 0

(3 − 𝜆)(4 − 𝜆) − 1(2) = 0
(𝜆 − 2)(𝜆 − 5) = 0

𝜆 = 2, 5.

Thus, the eigenvalues are 2 and 5. We now find the corresponding eigenvectors.
2:

[
0
0

]
=
[

3 − 𝜆 1
2 4 − 𝜆

] [
𝑥
𝑦

]

=
[

1 1
2 2

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

𝑥 + 𝑦
2𝑥 + 2𝑦

]

⟹ 𝑦 = −𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
−1

]
.

The first eigenvalue-eigenvector pair is
{
2,
[

1
−1

]}
.

5:

[
0
0

]
=
[

3 − 𝜆 1
2 4 − 𝜆

] [
𝑥
𝑦

]

=
[

−2 1
2 −1

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

−2𝑥 + 𝑦
2𝑥 − 𝑦

]

⟹ 𝑦 = 2𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
2

]
.

The second eigenvalue-eigenvector pair is
{
5,
[

1
2

]}
.

(c)
[

1 −1
4 6

]
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[
1 −1
4 6

] [
𝑥
𝑦

]
= 𝜆

[
𝑥
𝑦

]
Definition of eigenvector

= 𝜆
[

1 0
0 1

] [
𝑥
𝑦

]

⟹
([

1 −1
4 6

]
− 𝜆

[
1 0
0 1

])[
𝑥
𝑦

]
=
[

0
0

]
Subtraction and factoring

⟹
[

1 − 𝜆 −1
4 6 − 𝜆

] [
𝑥
𝑦

]
=
[

0
0

]

det
[

1 − 𝜆 −1
4 6 − 𝜆

]
= 0

(1 − 𝜆)(6 − 𝜆) − (−1)(4) = 0
(𝜆 − 2)(𝜆 − 5) = 0

𝜆 = 2, 5.

Thus, the eigenvalues are 2 and 5. Interestingly, these are the same eigenvalues as the previous problem.
We now find the corresponding eigenvectors.

2:

[
0
0

]
=
[

1 − 𝜆 −1
4 6 − 𝜆

] [
𝑥
𝑦

]

=
[

−1 −1
4 4

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

𝑥 + 𝑦
4𝑥 + 4𝑦

]

⟹ 𝑦 = −𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
−1

]
.

The first eigenvalue-eigenvector pair is
{
2,
[

1
−1

]}
.

5:

[
0
0

]
=
[

1 − 𝜆 −1
4 6 − 𝜆

] [
𝑥
𝑦

]

=
[

−4 −1
4 1

] [
𝑥
𝑦

]

⟹
[

0
0

]
=
[

−4𝑥 − 𝑦
4𝑥 + 𝑦

]

⟹ 𝑦 = −4𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
−4

]
.

The second eigenvalue-eigenvector pair is
{
5,
[

1
−4

]}
.

4. The image of an eigenvector will have the same when acted on by the transformation
for which it is an eigenvector. The image of the eigenvector is simply the eigenvector

itself multiplied by its corresponding .

The image of an eigenvector will have the same direction when acted on by the transformation matrix
for which it is an eigenvector. The image of the eigenvector is simply the eigenvector itself multiplied by its
corresponding eigenvalue.
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5.

(a) If the transformation matrix were a reflection over a line 𝑦 = 𝑥 tan 𝜃, in what directions
would the two eigenvectors point? Think geometrically.

Geometrically, the eigenvectors would be 1. along the line 𝑦 = 𝑥 tan 𝜃 and 2. perpendicular to the line.
Observe the figure below if you’re confused.

y

x

𝑙

𝑒1𝑒2

Figure 4: The eigenvectors 𝑒1, 𝑒2 of reflection over the line 𝑙.

(b) What would the angle between them be?

The angle between them is 90◦, since one is along a line and the other is perpendicular to that line.

(c) What would their eigenvalues be?

Referring to the above figure, 𝑒1 would have an eigenvalue of 1, since its magnitude and direction is
completely preserved, while 𝑒2 would have an eigenvalue of −1, since it is multiplied by −1 to be inverted like
that.

6. Recall that multiplication by
[

cos 2𝜃 sin 2𝜃
sin 2𝜃 −cos 2𝜃

]
results in a reflection over 𝑦 = 𝑥 tan 𝜃.

(a) Write a matrix that results in a reflection over the line 𝑦 =
√
3
3 𝑥.

The angle here is

tan−1
√
3
3

= tan−1 1√
3
= tan−1

1∕2

1∕
√
3
= 30◦.

Thus, the matrix is

[
cos 2 ⋅ 30◦ sin 2 ⋅ 30◦
sin 2 ⋅ 30◦ −cos 2 ⋅ 30◦

]
=
⎡
⎢⎢⎣

1
2

√
3
2√

3
2 − 1

2

⎤
⎥⎥⎦
.

(b) Find the eigenvalues of that matrix, and the corresponding eigenvectors.

We find the eigenvalues:

⎡⎢⎢⎣

1
2 − 𝜆

√
3
2√

3
2 − 1

2 − 𝜆

⎤⎥⎥⎦

[
𝑥
𝑦

]
=
[

0
0

]
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(1
2
− 𝜆

)(
−1
2
− 𝜆

)
−

√
3
2

⋅

√
3
2

= 𝜆2 − 1
4
− 3

4
= 𝜆2 − 1

𝜆 = ±1.
We then find the corresponding eigenvectors:
1:

[
0
0

]
=
⎡⎢⎢⎣

1
2 − 𝜆

√
3
2√

3
2 − 1

2 − 𝜆

⎤⎥⎥⎦

[
𝑥
𝑦

]

=
⎡⎢⎢⎣
− 1

2

√
3
2√

3
2 − 3

2

⎤⎥⎥⎦

[
𝑥
𝑦

]

⟹
[

0
0

]
=
⎡⎢⎢⎣
− 1

2𝑥 +
√
3
2 𝑦√

3
2 𝑥 − 3

2𝑦

⎤⎥⎥⎦
⟹ 𝑦 = 𝑥√

3
→

[
𝑥
𝑦

]
= 𝑠

[ √
3
1

]
.

−1:

[
0
0

]
=
⎡⎢⎢⎣

1
2 − 𝜆

√
3
2√

3
2 − 1

2 − 𝜆

⎤⎥⎥⎦

[
𝑥
𝑦

]

=
⎡⎢⎢⎣

3
2

√
3
2√

3
2

1
2

⎤⎥⎥⎦

[
𝑥
𝑦

]

⟹
[

0
0

]
=
⎡⎢⎢⎣

3
2𝑥 +

√
3
2 𝑦√

3
2 𝑥 + 1

2𝑦

⎤⎥⎥⎦
⟹ 𝑦 = −𝑥

√
3 →

[
𝑥
𝑦

]
= 𝑠

[ 1
−
√
3

]
.

Thus, the eigenvalue-eigenvector pairs are
{
1,
[ √

3
1

]}
and

{
1,
[ 1

−
√
3

]}
.

(c) Do your calculations agree with your answers to the previous problem?

Yes, they do. Here are the graphs of those two eigenvectors:

0

1

y

−0.5 0 0.5 1
x

𝜃 = 30◦

𝑒1
𝑒2
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Figure 5: The calculated eigenvectors with the line 𝜃 = 30◦.

The corresponding eigenvalues also match up.

(d) What are the relationships between the two eigenvectors and between the two eigenval-
ues?

The two eigenvectors are 90◦ displaced from one another. The two eigenvalues are opposites.

7.

(a) Write a matrix which results in a 60◦ rotation counterclockwise.

This is just
[

cos 60◦ − sin 60◦
sin 60◦ cos 60◦

]
=
⎡
⎢⎢⎣

1
2 −

√
3
2√

3
2

1
2

⎤⎥⎥⎦
.

(b) Find the eigenvalues. What do you find strange?

We solve the equation

det
⎡⎢⎢⎣

1
2 − 𝜆 −

√
3
2√

3
2

1
2 − 𝜆

⎤⎥⎥⎦
= 0.

(1
2
− 𝜆

)(1
2
− 𝜆

)
−

(
−
√
3
2

)
⋅

√
3
2

= 0

𝜆2 − 𝜆 + 1
4
+ 3

4
= 0

𝜆2 − 𝜆 + 1 = 0

𝜆 = 1 ±
√
−3

2

𝜆 = 1
2
+

√
3
2

𝑖, 1
2
−

√
3
2

𝑖.

The eigenvalues are complex! They have magnitude 1, however, like the eigenvalues of the reflection.

(c) Find the eigenvectors for those eigenvalues. What’s strange about them?

1
2 +

√
3
2 𝑖 ∶

⎡
⎢⎢⎣

1
2 − 𝜆 −

√
3
2√

3
2

1
2 − 𝜆

⎤
⎥⎥⎦

[
𝑥
𝑦

]
=
⎡
⎢⎢⎣
−

√
3
2 𝑖 −

√
3
2√

3
2 −

√
3
2 𝑖

⎤
⎥⎥⎦

[
𝑥
𝑦

]
=
[

0
0

]

⎡⎢⎢⎣
−

√
3
2 𝑖𝑥 −

√
3
2 𝑦√

3
2 𝑥 −

√
3
2 𝑖𝑦

⎤⎥⎥⎦
=
[

0
0

]

⟹ 𝑦 = −𝑖𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
−𝑖

]
.

Weird!
1
2 −

√
3
2 𝑖 ∶
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⎡⎢⎢⎣

1
2 − 𝜆 −

√
3
2√

3
2

1
2 − 𝜆

⎤⎥⎥⎦

[
𝑥
𝑦

]
=
⎡⎢⎢⎣

√
3
2 𝑖 −

√
3
2√

3
2

√
3
2 𝑖

⎤⎥⎥⎦

[
𝑥
𝑦

]
=
[

0
0

]

⎡⎢⎢⎣

√
3
2 𝑖𝑥 −

√
3
2 𝑦√

3
2 𝑥 +

√
3
2 𝑖𝑦

⎤⎥⎥⎦
=
[

0
0

]

⟹ 𝑦 = 𝑖𝑥 →

[
𝑥
𝑦

]
= 𝑠

[
1
𝑖

]
.

Fascinating! The eigenvalue-eigenvector pairs are
{

1
2 +

√
3
2 𝑖,

[
1
−𝑖

]}
and

{
1
2 −

√
3
2 𝑖,

[
1
𝑖

]}
.

(d) Explain what’s going on.

There are no vectors which don’t change orientation under a rotation, so the solutions we get can’t be
real. Nonetheless, a quadratic always has two roots if the discriminant is nonzero, so we get two solutions.

(e) What are the relationships between the two eigenvectors and between the two eigenval-
ues?

The eigenvalues are each other’s complex conjugates. The eigenvectors, graphed in the complex plane,
form a 90◦ between each other.

8. The matrix
[

1 2
0 1

]
is a shear parallel to the 𝑥-axis.

(a) What vectors don’t change direction when multiplied by this matrix?

Only vectors parallel to the 𝑥-axis don’t change direction, i.e.
[

𝑠
0

]
for any real 𝑠.

(b) What would you expect the eigenvectors to be?

We’d expect there to only be one family of eigenvectors,
[

1
0

]
.

(c) Find the eigenvectors and eigenvalues of this matrix.

We want det
[

1 − 𝜆 2
0 1 − 𝜆

]
= 0, which simplifies to (𝜆−1)2 = 0. Thus, there is only one eigenvalue: 1.

This makes sense.

The eigenvector is the solution to
[

0 2
0 0

] [
𝑥
𝑦

]
=

[
0
0

]
, which gives

[
2𝑦
0

]
=

[
0
0

]
. Thus, 𝑦 = 0,

and the eigenvectors are the family 𝑠
[

1
0

]
.

(d) What is different this time?

There is only one eigenvector and eigenvalue!

(e) Can you represent every vector as sums of eigenvectors?

In this case, you cannot represent every vector as a sum of eigenvectors. After all, any sum of the one
eigenvector cannot have a nonzero 𝑦 coordinate.

9. The matrices below result in some stretches. Find the eigenvectors and eigenvalues for both.

(a)
[ 2 0
0 5

]
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The characteristic polynomial28 is just (2 − 𝜆)(5 − 𝜆), which gives eigenvalues 𝜆 = 2, 5.
2:

[
2 − 2 0
0 5 − 2

] [
𝑥
𝑦

]
=
[

0
0

]

[
0
3𝑦

]
=
[

0
0

]
.

Thus, 𝑦 = 0 and the family of eigenvectors is
[

1
0

]
.

5:
[

2 − 5 0
0 5 − 5

] [
𝑥
𝑦

]
=
[

0
0

]

[
−3𝑥
0

]
=
[

0
0

]
.

Thus, 𝑥 = 0 and the family of eigenvectors is
[

0
1

]
.

(b)
[ 3 0
0 3

]

The characteristic polynomial here is (3 − 𝜆)(3 − 𝜆), yielding 𝜆 = 3. We find the eigenvector:
[

3 − 3 0
0 3 − 3

] [
𝑥
𝑦

]
=
[

0
0

]

[
0
0

]
=
[

0
0

]
.

Thus, all
[

𝑥
𝑦

]
are eigenvectors. This makes sense! After all, all vectors are scaled up by a factor of 3,

and no vectors change direction.

10. Note that most 2 × 2 matrices have two eigenvectors. How many would you expect to find for an
𝑛 × 𝑛 matrix?

You’d expect there to be 𝑛 eigenvectors in an 𝑛 × 𝑛 matrix. One way to rationalize this further is that the
characteristic polynomial of an 𝑛 × 𝑛 matrix is degree 𝑛, which usually has 𝑛 roots.

11. Assuming that 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑥, 𝑦 are real, what conditions would you impose on them in the matri-

ces (i)
[

3 𝑝
𝑞 4

]
, (ii)

[
𝑥 −2
3 𝑦

]
, and (iii)

[
𝑟 𝑠
𝑡 𝑢

]
to have...

(a) ... two real eigenvalues?

i.
[

3 𝑝
𝑞 4

]

The characteristic polynomial here is (3 − 𝜆)(4 − 𝜆) − 𝑝𝑞. Expanded out, this is 𝜆2 −7𝜆+12− 𝑝𝑞. We want
the discriminant to be greater than 0 to have two real eigenvalues, so

𝑏2 − 4𝑎𝑐 = 72 − 4(1)(12 − 𝑝𝑞) > 0
48 − 4𝑝𝑞 < 49 Manipulate, flip the inequality

4𝑝𝑞 > −1Subtract 48 from both sides

𝑝𝑞 > −1
4
.

This is our restriction; we must have 𝑝𝑞 > − 1
4 .

28The polynomial involving 𝜆 determining the eigenvalues.
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ii.
[

𝑥 −2
3 𝑦

]

The characteristic polynomial here is (𝑥 − 𝜆)(𝑦 − 𝜆) − (−2)(3). This expands out to 𝜆2 − (𝑥 + 𝑦)𝜆 + 𝑥𝑦 + 6.
Again, we want the discriminant to be greater than 0 to have two real eigenvalues, so

𝑏2 − 4𝑎𝑐 = (𝑥 + 𝑦)2 − 4(1)(𝑥𝑦 + 6) > 0
𝑥2 + 𝑦2 + 2𝑥𝑦 − 4𝑥𝑦 − 24 > 0

𝑥2 − 2𝑥𝑦 + 𝑦2 > 24
(𝑥 − 𝑦)2 > 24.

Thus, our restriction is (𝑥 − 𝑦)2 > 24, or equivalently, |𝑥 − 𝑦| >
√
24 = 2

√
6.

This is always true by the Trivial Inequality29. Thus, there are always two real eigenvalues for this matrix.

iii.
[

𝑟 𝑠
𝑡 𝑢

]

The characteristic polynomial here is (𝑟 − 𝜆)(𝑢 − 𝜆) − 𝑠𝑡, which expands out to

𝜆2 − (𝑢 + 𝑟)𝜆 + 𝑟𝑢 − 𝑠𝑡.

Again, we want the discriminant to be greater than 0 to have two real eigenvalues, so

𝑏2 − 4𝑎𝑐 = (𝑢 + 𝑟)2 − 4(𝑟𝑢 − 𝑠𝑡) > 0
𝑢2 + 𝑟2 + 2𝑟𝑢 − 4𝑟𝑢 − 4𝑠𝑡 > 0

𝑢2 − 2𝑟𝑢 + 𝑟2 > 4𝑠𝑡
(𝑢 − 𝑟)2 > 4𝑠𝑡.

There isn’t a great way to simplify this, but (𝑢−𝑟)2 > 4𝑠𝑡 is a potential answer. The first line of the equations
above also gives us a potentially simpler interpretation:

(𝑢 + 𝑟)2 > 4(𝑟𝑢 − 𝑠𝑡) = 4 det
[

𝑟 𝑠
𝑡 𝑢

]
.

Thus, the sum of the top-left to bottom-right diagonal squared must be greater than four times the deter-
minant. Wordy!

(b) ... two complex eigenvalues?

i.
[

3 𝑝
𝑞 4

]

This is identical to problem (a) part i, but we want the discriminant to be smaller than 0. The proof is
identical, just with a flipped inequality sign, so the answer is

𝑝𝑞 < −1
4
.

ii.
[

𝑥 −2
3 𝑦

]

This is identical to problem (a) part ii, but we want the discriminant to be smaller than 0. The proof is
identical, just with a flipped inequality sign, so the answer is

(𝑥 − 𝑦)2 < 24.
29The Trivial Inequality states 𝑥2 ≥ 0 for all real 𝑥.
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iii.
[

𝑟 𝑠
𝑡 𝑢

]

This is identical to problem (a) part iii, but we want the discriminant to be smaller than 0. The proof is
identical, just with a flipped inequality sign, so the answer is

(𝑢 − 𝑟)2 < 4𝑠𝑡 or (𝑢 + 𝑟)2 < 4 det
[

𝑟 𝑠
𝑡 𝑢

]
.

(c) ... only one eigenvalue?

i.
[

3 𝑝
𝑞 4

]

This is identical to the previous two iterations of this matrix, but with an equality sign:

𝑝𝑞 = −1
4
.

ii.
[

𝑥 −2
3 𝑦

]

This is identical to the previous two iterations of this matrix, but with an equality sign:

(𝑥 − 𝑦)2 = 24 → 𝑥 − 𝑦 = ±2
√
6.

iii.
[

𝑟 𝑠
𝑡 𝑢

]

This is identical to the previous two iterations of this matrix, but with an equality sign:

(𝑢 − 𝑟)2 = 4𝑠𝑡 or (𝑢 + 𝑟)2 = 4 det
[

𝑟 𝑠
𝑡 𝑢

]
.

12.

(a) Write a 3 × 3 matrix showing a rotation of 𝜃 around the 𝑧-axis.

We already did this a couple sections ago. The matrix is

⎡⎢⎢⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤⎥⎥⎦
.

(b) Name the real eigenvector (this shouldn’t require any work).

The real eigenvector is the 𝑧-axis, since it doesn’t move (observe the figure below if you’re confused).
Explicitly, this is the family of eigenvectors

𝑠
⎡⎢⎢⎣

0
0
1

⎤⎥⎥⎦
.
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Figure 6: The 𝑧-axis remains stationary in a rotation of 𝜃 around the 𝑧-axis.

(c) Find all three eigenvectors.

The determinant of the eigenvector matrix is, by the minors method:

0 = det
⎡⎢⎢⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤⎥⎥⎦
= (cos 𝜃−𝜆) det

[
cos 𝜃 − 𝜆 0

0 1 − 𝜆

]
−(− sin 𝜃) det

[
sin 𝜃 0
0 1 − 𝜆

]
+0 (something)

= (cos 𝜃 − 𝜆)(cos 𝜃 − 𝜆)(1 − 𝜆) + (sin 𝜃)(sin 𝜃)(1 − 𝜆)

= (1 − 𝜆)((cos 𝜃 − 𝜆)2 + (sin 𝜃)(sin 𝜃))

= (1 − 𝜆)(𝑙𝑎𝑚𝑏𝑑𝑎2 + cos2 𝜃 − 2𝜆 cos 𝜃 + sin2 𝜃)

= (1 − 𝜆)(𝜆2 − 2𝜆 cos 𝜃 + cos2 𝜃 + sin2 𝜃
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

diff of squares

)

= (1 − 𝜆)(𝜆 − (cos 𝜃 − 𝑖 sin 𝜃))(𝜆 − (cos 𝜃 + 𝑖 sin 𝜃)).

This gives eigenvalues 1, cos 𝜃 − 𝑖 sin 𝜃 and cos 𝜃 + 𝑖 sin 𝜃. We already knew about the first one.
We now compute the eigenvectors:
1:

⎡⎢⎢⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
⎡⎢⎢⎣

cos 𝜃 − 1 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 1 0
0 0 0

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

(cos 𝜃 − 1)𝑥 − (sin 𝜃)𝑦
(sin 𝜃)𝑥 + (cos 𝜃 − 1)𝑦

0

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
.

Thus, (cos 𝜃 − 1)𝑥 − (sin 𝜃)𝑦 = 0 and (sin 𝜃)𝑥 + (cos 𝜃 − 1)𝑦 = 0. The first equation yields 𝑥 = sin 𝜃
cos 𝜃−1𝑦.

Substitution into the second equation yields

𝑦 sin2 𝜃
cos 𝜃 − 1

+ (cos 𝜃 − 1)𝑦 = 0

𝑦
(
sin2 𝜃 + (cos 𝜃 − 1)2

cos 𝜃 − 1

)
= 0
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𝑦
(
sin2 𝜃 + cos2 𝜃 − 2 cos 𝜃 + 1

cos 𝜃 − 1

)
= 0

𝑦
(2 − 2 cos 𝜃

cos 𝜃 − 1

)
= 0

−2𝑦 = 0

𝑦 = 0.

Thus, 𝑥 = 𝑦 = 0, or cos 𝜃−1 = 0 (since then the first substitution is invalid). This makes sense! If cos 𝜃 = 1,
then it’s a rotation by 0◦, which has all vectors as eigenvectors. Anyway, this otherwise gives the family of

eigenvectors 𝑠
⎡⎢⎢⎣

0
0
1

⎤⎥⎥⎦
.

cos 𝜃 − 𝑖 sin 𝜃:

⎡⎢⎢⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
⎡
⎢⎢⎣

𝑖 sin 𝜃 − sin 𝜃 0
sin 𝜃 𝑖 sin 𝜃 0
0 0 𝑖 sin 𝜃 − cos 𝜃

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

(𝑖 sin 𝜃)𝑥 − (sin 𝜃)𝑦 + 1
(sin 𝜃)𝑥 + (𝑖 sin 𝜃)𝑦
(𝑖 sin 𝜃 − cos 𝜃 + 1)𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
.

Since 𝑖 sin 𝜃 − cos 𝜃 + 1 ≠ 0 except for cos 𝜃 = 1 (the rotation of 0 again), this yields 𝑧 = 0 and 𝑥 = 𝑖𝑦, so

the family of eigenvectors is 𝑠
⎡⎢⎢⎣

𝑖
1
0

⎤⎥⎥⎦
.

cos 𝜃 + 𝑖 sin 𝜃:

⎡⎢⎢⎣

cos 𝜃 − 𝜆 − sin 𝜃 0
sin 𝜃 cos 𝜃 − 𝜆 0
0 0 1 − 𝜆

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
⎡⎢⎢⎣

−𝑖 sin 𝜃 − sin 𝜃 0
sin 𝜃 −𝑖 sin 𝜃 0
0 0 cos 𝜃 − 𝑖 sin 𝜃 + 1

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

−(𝑖 sin 𝜃)𝑥 − (sin 𝜃)𝑦
(sin 𝜃)𝑥 − (𝑖 sin 𝜃)𝑦
(1 − 𝑖 sin 𝜃 − cos 𝜃)𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
.

For nonzero rotations, this yields 𝑧 = 0 and 𝑥 = −𝑖𝑦, giving the family of eigenvectors 𝑠 =
⎡⎢⎢⎣

−𝑖
1
0

⎤⎥⎥⎦
.

Overall, the eigenvalue-eigenvector pairs are

⎧⎪⎨⎪⎩
1,
⎡⎢⎢⎣

0
0
1

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩
cos 𝜃 − 𝑖 sin 𝜃,

⎡⎢⎢⎣

𝑖
1
0

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
, and

⎧⎪⎨⎪⎩
cos 𝜃 + 𝑖 sin 𝜃,

⎡⎢⎢⎣

−𝑖
1
0

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
.

13.

(d) What should the absolute value of an eigenvalue of any rotation matrix be?

It should be 1, since rotations don’t stretch anything and doesn’t change orientation. All distances are
preserved. This is true of our eigenvectors.

(e) The complex eigenvalues relate to the angle of rotation. What is that relationship?

The complex eigenvalues are cos 𝜃 + 𝑖 sin 𝜃 = cis 𝜃 and cos 𝜃 − 𝑖 sin 𝜃 = cis 𝜃, so they make an angle of 𝜃
with the real axis30 in the complex plane. Furthermore, the angle between them is 2𝜃.

30Note that we shouldn’t call it the 𝑥-axis, because this is a different set of axes than the 𝑥𝑦𝑧-axes we’re considering in this problem.
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14. In a right-handed coordinate system, rotations in three dimensions are performed by combina-
tions of the three matrices

𝑋 =
⎡⎢⎢⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤⎥⎥⎦
, 𝑌 =

⎡⎢⎢⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤⎥⎥⎦
, 𝑍 =

⎡⎢⎢⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤⎥⎥⎦
.

Each matrix 𝑋, 𝑌 ,𝑍 rotates around the 𝑥, 𝑦, 𝑧 axes by 𝛼, 𝛽, 𝛾 , respectively.

In 2D, rotations combine to make other rotations. Similarly, if we combine any number of these
rotations, the net result will be a rotation about some axis—though not necessarily a coordinate
axis. Another way to picture this is that if we operate on an origin-centered sphere with these
matrices, there will always be two opposite points on the sphere which have no net movement.

Try computing the following products.

(a) 𝑋𝑌

𝑋𝑌 =
⎡⎢⎢⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤⎥⎥⎦

⎡⎢⎢⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤⎥⎥⎦

=
⎡
⎢⎢⎣

(1)(cos 𝛽) + (0)(0) + (0)(− sin 𝛽) (1)(0) + (0)(1) + (0)(0) (1)(sin 𝛽) + (0)(0) + (0)(cos 𝛽)
(0)(cos 𝛽) + (cos 𝛼)(0) + (− sin 𝛼)(− sin 𝛽) (0)(0) + (cos 𝛼)(1) + (− sin 𝛼)(0) (0)(sin 𝛽) + (cos 𝛼)(0) + (− sin 𝛼)(cos 𝛽)
(0)(cos 𝛽) + (sin 𝛼)(0) + (cos 𝛼)(− sin 𝛽) (0)(0) + (sin 𝛼)(1) + (cos 𝛼)(0) (0)(sin 𝛽) + (sin 𝛼)(0) + (cos 𝛼)(cos 𝛽)

⎤⎥⎥⎦

=
⎡⎢⎢⎣

cos 𝛽 0 sin 𝛽
sin 𝛼 sin 𝛽 cos 𝛼 − sin 𝛼 cos 𝛽

−cos 𝛼 sin 𝛽 sin 𝛼 cos 𝛼 cos 𝛽

⎤⎥⎥⎦
.

(b) 𝑋𝑍

𝑋𝑍 =
⎡⎢⎢⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤⎥⎥⎦

⎡⎢⎢⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤⎥⎥⎦

=
⎡⎢⎢⎣

(1)(cos 𝛾) + (0)(sin 𝛾) + (0)(0) (1)(− sin 𝛾) + (0)(cos 𝛾) + (0)(0) (1)(0) + (0)(0) + (0)(1)
(0)(cos 𝛾) + (cos 𝛼)(sin 𝛾) + (− sin 𝛼)(0) (0)(− sin 𝛾) + (cos 𝛼)(cos 𝛾) + (− sin 𝛼)(0) (0)(0) + (cos 𝛼)(0) + (− sin 𝛼)(1)
(0)(cos 𝛾) + (sin 𝛼)(sin 𝛾) + (cos 𝛼)(0) (0)(− sin 𝛾) + (sin 𝛼)(cos 𝛾) + (cos 𝛼)(0) (0)(0) + (sin 𝛼)(0) + (cos 𝛼)(1)

⎤⎥⎥⎦

=
⎡⎢⎢⎣

cos 𝛾 − sin 𝛾 0
cos 𝛼 sin 𝛾 cos 𝛼 cos 𝛾 − sin 𝛼
sin 𝛼 sin 𝛾 sin 𝛼 cos 𝛾 cos 𝛼

⎤⎥⎥⎦
.

(c) 𝑌 𝑋

𝑌𝑋 =
⎡⎢⎢⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤⎥⎥⎦

⎡⎢⎢⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤⎥⎥⎦

=
⎡
⎢⎢⎣

(cos 𝛽)(1) + (0)(0) + (sin 𝛽)(0) (cos 𝛽)(0) + (0)(cos 𝛼) + (sin 𝛽)(sin 𝛼) (cos 𝛽)(0) + (0)(− sin 𝛼) + (sin 𝛽)(cos 𝛼)
(0)(1) + (1)(0) + (0)(0) (0)(0) + (1)(cos 𝛼) + (0)(sin 𝛼) (0)(0) + (1)(− sin 𝛼) + (0)(cos 𝛼)

(− sin 𝛽)(1) + (0)(0) + (cos 𝛽)(0) (− sin 𝛽)(0) + (0)(cos 𝛼) + (cos 𝛽)(sin 𝛼) (− sin 𝛽)(0) + (0)(− sin 𝛼) + (cos 𝛽)(cos 𝛼)

⎤
⎥⎥⎦

=
⎡⎢⎢⎣

cos 𝛽 sin 𝛽 sin 𝛼 sin 𝛽 cos 𝛼
0 cos 𝛼 − sin 𝛼

− sin 𝛽 cos 𝛽 sin 𝛼 cos 𝛽 cos 𝛼

⎤⎥⎥⎦
.

(d) 𝑍𝑋
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𝑍𝑋 =
⎡⎢⎢⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤⎥⎥⎦

=
⎡⎢⎢⎣

(cos 𝛾)(1) + (− sin 𝛾)(0) + (0)(0) (cos 𝛾)(0) + (− sin 𝛾)(cos 𝛼) + (0)(sin 𝛼) (cos 𝛾)(0) + (− sin 𝛾)(− sin 𝛼) + (0)(cos 𝛼)
(sin 𝛾)(1) + (cos 𝛾)(0) + (0)(0) (sin 𝛾)(0) + (cos 𝛾)(cos 𝛼) + (0)(sin 𝛼) (sin 𝛾)(0) + (cos 𝛾)(− sin 𝛼) + (0)(cos 𝛼)

(0)(1) + (0)(0) + (1)(0) (0)(0) + (0)(cos 𝛼) + (1)(sin 𝛼) (0)(0) + (0)(− sin 𝛼) + (1)(cos 𝛼)

⎤⎥⎥⎦

=
⎡⎢⎢⎣

cos 𝛾 − sin 𝛾 cos 𝛼 sin 𝛾 sin 𝛼
sin 𝛾 cos 𝛾 cos 𝛼 −cos 𝛾 sin 𝛼
0 sin 𝛼 cos 𝛼

⎤⎥⎥⎦
.

Interestingly, 𝑍𝑋 ≠ 𝑋𝑍. Indeed, while rotations commute in 2 dimensions, they do not always commute
in 3 dimensions.

15.

(a) Without matrices, consider a cube with side length 2 at the origin so its faces are perpen-
dicular to the coordinate axes. Rotate it, first 90◦ counterclockwise about the 𝑦-axis, then
90◦ counterclockwise about the 𝑥-axis. Note that rotations are done facing from the “pos-
itive side” of the coordinate axis. The net result should leave two vertices fixed. Which
two?

This requires a good amount of geometric visualization. The answer is the vertices (1, 1, 1) and (−1,−1,−1).
Observe the figures below:

Figure 7: The starting position of
the cube.

Figure 8: Rotation about the 𝑦-
axis.

Figure 9: Rotation about the 𝑥-
axis.

Indeed, 𝐴 and 𝐺 remain fixed. These are the vertices (1, 1, 1) and (−1,−1,−1).

(b) Write a vector for the axis of rotation.

The vector is any nonzero multiple of
⎡⎢⎢⎣

1
1
1

⎤⎥⎥⎦
. In the following figure, the axis of rotation is graphed.
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Figure 10: The net axis of rotation is ⟨1, 1, 1⟩.
(c) How many degrees do you think the net rotation of the cube is? Be careful; the answer is

not 180◦.

The rotation is 120◦, because 𝐸 is going to 𝐷, 𝐷 is going to 𝐵 and 𝐸 is going to 𝐷, a cycle with period 3.

(d) Let’s check our answers using matrices. Write a matrix product that corresponds to a
rotation of 90◦ about the 𝑦-axis, followed by 90◦ about the 𝑥-axis.

Rotation of 90◦ about the 𝑦-axis: 𝑌 =
⎡⎢⎢⎣

cos 90◦ 0 sin 90◦
0 1 0

− sin 90◦ 0 cos 90◦

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0 0 1
0 1 0
−1 0 0

⎤⎥⎥⎦
.

Rotation of 90◦ about the 𝑥-axis: 𝑋 =
⎡⎢⎢⎣

1 0 0
0 cos 90◦ − sin 90◦
0 sin 90◦ cos 90◦

⎤⎥⎥⎦
=
⎡⎢⎢⎣

1 0 0
0 0 −1
0 1 0

⎤⎥⎥⎦
.

As usual, matrix multiplication goes right-to-left, so the product is 𝑋𝑌 .

(e) Multiply out the matrix product.

𝑋𝑌 =
⎡⎢⎢⎣

1 0 0
0 0 −1
0 1 0

⎤⎥⎥⎦

⎡⎢⎢⎣

0 0 1
0 1 0
−1 0 0

⎤⎥⎥⎦

=
⎡⎢⎢⎣

(1)(0) + (0)(0) + (0)(−1) (1)(0) + (0)(1) + (0)(0) (1)(1) + (0)(0) + (0)(0)
(0)(0) + (0)(0) + (−1)(−1) (0)(0) + (0)(1) + (−1)(0) (0)(1) + (0)(0) + (−1)(0)
(0)(0) + (1)(0) + (0)(−1) (0)(0) + (1)(1) + (0)(0) (0)(1) + (1)(0) + (0)(0)

⎤⎥⎥⎦

=
⎡⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦
.

Interesting!

(f) Remember that the real eigenvector in a rotation gives the axis of rotation, and the com-
plex eigenvalues give information about the net rotation. Evaluate these and check your
answers for (a) and (b).

We first find the eigenvalues:

det
⎡⎢⎢⎣

−𝜆 0 1
1 −𝜆 0
0 1 −𝜆

⎤⎥⎥⎦
= 0

−𝜆 ⋅ det
[

−𝜆 0
1 −𝜆

]
− 0 ⋅ (something) + 1 ⋅ det

[
1 −𝜆
0 1

]
= 0

−𝜆3 + (1 + 0 ⋅ −𝜆) = 0

𝜆3 = 1.

We let 𝜆 = cis 𝜃:

cis3 𝜃 = 1 ⟹ 𝜃 = 0, 2𝜋
3
, 4𝜋
3
.

Thus, 𝜆 = 1, cis 2𝜋
3 , cis 4𝜋

3 .
We now compute the eigenvector for the axis of rotation, which should correspond to 𝜆 = 1.

⎡⎢⎢⎣

−𝜆 0 1
1 −𝜆 0
0 1 −𝜆

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
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⎡⎢⎢⎣

−1 0 1
1 −1 0
0 1 −1

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

−𝑥 + 𝑧
𝑥 − 𝑦
𝑦 − 𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
.

These yields 𝑥 = 𝑦 = 𝑧 and the eigenvector family 𝑠
⎡⎢⎢⎣

1
1
1

⎤⎥⎥⎦
, confirming our previous result.

We can find the angle of rotation by the angle the complex eigenvalues make with the 𝑥-axis. These
eigenvalues are cis 2𝜋

3 , cis 4𝜋
3 , which make a 2𝜋

3 = 120◦ angle with the 𝑥-axis. Thus, the magnitude of the
rotation is 120◦, confirming our hypothesis.

16. Here are two rotation matrices:

i.

⎡⎢⎢⎢⎣

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

⎤⎥⎥⎥⎦
, ii.

⎡⎢⎢⎢⎣

7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9

⎤⎥⎥⎥⎦
.

(a) What is the determinant of each matrix? (Don’t work, think!)

The determinant of each matrix is 1, since rotation matrices have determinant 1.

(b) What is true of each row and each column?

The sums of squares of each element in each row and column is 1. Therefore, each row vector and
column vector is a unit vector. As an example, consider the top row of (ii):

(7
9

)2
+
(4
9

)2
+
(4
9

)2
= 81

81
= 1.

(c) Find the axis of rotation associated with each matrix.

i.

⎡⎢⎢⎢⎣

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

⎤⎥⎥⎥⎦
We find the eigenvalues:

det
⎡⎢⎢⎢⎣

2
3 − 𝜆 − 2

3 − 1
3

1
3

2
3 − 𝜆 − 2

3
2
3

1
3

2
3 − 𝜆

⎤
⎥⎥⎥⎦
= 0

(2
3
− 𝜆

)
⋅ det

[ 2
3 − 𝜆 − 2

3
1
3

2
3 − 𝜆

]
−
(
−2
3

)
det

[ 1
3 − 2

3
2
3

2
3 − 𝜆

]
− 1

3
⋅ det

[ 1
3

2
3 − 𝜆

2
3

1
3

]
= 0

−𝜆3 + 2𝜆2 − 2𝜆 + 1 = 0

(𝜆 − 1)(𝜆2 − 𝜆 + 1) = 0.

The real eigenvalue is 𝜆 = 1, so we find the corresponding eigenvector:

⎡⎢⎢⎢⎣

2
3 − 𝜆 − 2

3 − 1
3

1
3

2
3 − 𝜆 − 2

3
2
3

1
3

2
3 − 𝜆

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

− 1
3 − 2

3 − 1
3

1
3 − 1

3 − 2
3

2
3

1
3 − 1

3

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎢⎣

− 1
3𝑥 − 2

3𝑦 −
1
3𝑧

1
3𝑥 − 1

3𝑦 −
2
3𝑧

2
3𝑥 + 1

3𝑦 −
1
3𝑧

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
.

Multiplying by 3 on both sides yields the system of equations
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⎧⎪⎨⎪⎩

−𝑥 − 2𝑦 − 𝑧 = 0
𝑥 − 𝑦 − 2𝑧 = 0
2𝑥 + 𝑦 − 𝑧 = 0

.

The solution to this system of equations is 𝑥 = 𝑧 = −𝑦. Thus, the eigenvector family is 𝑠
⎡⎢⎢⎣

1
−1
1

⎤⎥⎥⎦
, and the

axis of rotation is the vector ⟨1,−1, 1⟩.

i.

⎡⎢⎢⎢⎣

7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9

⎤⎥⎥⎥⎦
We find the eigenvalues:

det
⎡⎢⎢⎢⎣

7
9 − 𝜆 4

9
4
9

− 4
9 − 1

9 − 𝜆 8
9

4
9 − 8

9
1
9 − 𝜆

⎤⎥⎥⎥⎦
= 0

(7
9
− 𝜆

)
⋅ det

[
− 1

9 − 𝜆 8
9

− 8
9

1
9 − 𝜆

]
−
(4
9

)
⋅ det

[
− 4

9
8
9

4
9

1
9 − 𝜆

]
+
(4
9

)
⋅ det

[
− 4

9 − 1
9 − 𝜆

4
9 − 8

9

]
= 0

−𝜆3 + 7𝜆2
9

− 7𝜆
9

+ 1 = 0

−1
9
(𝜆 − 1)(9𝜆2 + 2𝜆 + 9) = 0.

The real eigenvalue is 𝜆 = 1, so we find the corresponding eigenvector:

⎡⎢⎢⎢⎣

7
9 − 𝜆 4

9
4
9

− 4
9 − 1

9 − 𝜆 8
9

4
9 − 8

9
1
9 − 𝜆

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
0

⎤⎥⎥⎦
.

⎡⎢⎢⎢⎣

− 2
9

4
9

4
9

− 4
9 − 10

9
8
9

4
9 − 8

9
8
9

⎤⎥⎥⎥⎦

⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
= 1

9

⎡⎢⎢⎣

−2𝑥 + 4𝑦 + 4𝑧
−4𝑥 − 10𝑦 + 8𝑧
4𝑥 − 8𝑦 + 8𝑧

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0
0
.

⎤⎥⎥⎦
The solution to this system of equations is ⟨𝑥, 𝑦, 𝑧⟩ = 𝑠⟨−2, 0, 1⟩. This is the axis of rotation: ⟨−2, 0, 1⟩.

(d) Find the angle of rotation associated with each matrix.

i.

⎡⎢⎢⎢⎣

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3
2
3

1
3

2
3

⎤⎥⎥⎥⎦
From the last time we dealt with this matrix, we found that the complex eigenvalues satisfy 𝜆2 − 𝜆+ 1 = 0.

By the quadratic formula, the solutions to this quadratic are 𝜆 = 1±𝑖
√
3

2 .

Since cis ±60◦ = 1
2 ±

√
3
2 𝑖 = 𝜆, the rotation is 60◦.

i.

⎡
⎢⎢⎢⎣

7
9

4
9

4
9

− 4
9 − 1

9
8
9

4
9 − 8

9
1
9

⎤
⎥⎥⎥⎦
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Previously, we found that the complex eigenvalues of this matrix satisfy the polynomial equation 9𝜆2+2𝜆+
9 = 0. By the quadratic formula, the roots of this equation are

−2 ±
√
22 − 4 ⋅ 92
18

= −1
9
± 4𝑖

√
5

9
.

The angle of rotation is given by

tan−1 𝑦
𝑥
=

± 4
√
5

9

− 1
9

= ± tan−1 4 ⋅
√
5,

which has magnitude tan−1(4
√
5).

179


